
Understanding Grids, Columns, Rows and Brics in Blocs App

This is one area of using Blocs that can confuse many who are new to the app and yet, it should be the first thing to be learned
if you are going to get the best out of using Blocs as a website development tool. The reason is very simple, grids, columns,
rows and brics form the basic structure of page layout. Combined, they enable websites to deploy a discipline that provides
responsiveness for various device sizes, whilst giving you the flexibility to lay things out fairly much as you please.

Lets start with the Grid and Columns

Blocs pages are built upon a grid structure comprising of 12 grid columns, each separated by a margin. This layout ensures
that whatever is placed into the page, the grid will keep everything evenly spaced to give visual consistency in layout across
any number of pages regardless of content layout. To see the grid in Blocs, you can hold down the shift key. If you want to
keep the grid visible (for the purpose of this tutorial) select Page Guides from the Page menu. This is what the guides look
like:

When a standard single column structure bloc is added to the page, it can be seen that the column is occupying 12 grid
columns. To display the column, just select it from the left sidebar. If you now resize the column using the rightmost resize
handle, it will be noted that the column will snap to the underlying grid columns.

This is a feature that helps to maintain that all important consistency of page layout. The alternative way of resizing the
column is to specify the number of grid columns in the Appearance section in the right sidebar. In the illustration above it is
set to 12. If this were to be changed to 4, the page would look like this:

With the column still selected, you can duplicate it with the keyboard shortcut Cmd+D or, use the right-click option and select
Duplicate from the context menu. This will place an identical column in the current row. If you duplicate again, you can fill the
entire row with columns to create a layout like this:

If you continue duplicating, more columns will be added, but they will wrap so that the new columns appear below the first
ones. Go ahed, add another three columns. You’l end up with a page looking like this:

Now let’s switch to another breakpoint (the MD one). This is typically the breakpoint used for laying out a page for a tablet
device. The first thing you will notice is that all the columns are now back at their 12 column width, meaning that all the
columns are now placed one under the other in a single column. Clearly, this may not be the layout we want for the tablet

version of our site. But, it’s easily rectified because the layout, although on a smaller device, is still built on that 12 column
grid. So, all we have to do is select each of the columns again and adjust the width. For example, if we wanted this device to
have only two columns displaying instead of three, you would select the first column and change its width to 6. This is what it
will look like:

If you now select the next column (the one underneath the smaller top column) and resize that one to 6, you will notice that it
jumps up and sits next to the first column. Keep repeating the exercise on all the other columns and you will end up with a
layout of 2 columns wide by 3 columns deep.

If you now check back on your LG breakpoint, everything will be as you left it - 3 columns wide by 2 columns deep.

You can now populate your columns with images on any breakpoint. The images will automatically transfer to the other
breakpoints at their correct size. This is what the LG page looks like with images in place:

However, there is something wrong here - there is no space between the images vertically. Therefore, we have to add some
margin to our images. We can do this by selecting the first image on the page and selecting a margin in the Appearance
section of the right sidebar

This margin setting will be applied across the entire row of images. This means if you check on the other breakpoints, not all
the images will have a margin applied - only those that are in the same row as the image where the margin is applied. As a
consequence, you would have to apply margin to every image in the block to ensure it looks ok on every breakpoint. This
brings us neatly to the subject of rows in blocs and how they are used to give us more layout flexibility. Up until now, all our
columns have been set within the same row. Although this has created the illusion of rows of images, they are in fact one wide
row which has had its content wrapped to create the illusion of rows. Whilst this is great if we are creating a grid of images for
say a gallery, it isn’t the ideal solution where different content may be needed at different column widths within a single bloc.
Using rows also enables us to apply things like margins to separate content area without worrying about the effect on other
breakpoints.

Getting to Grips with Rows

In our previous examples, all our content was placed into
a single row, as indicated in the left sidebar. All our
columns and the column contents are all sitting in one
row that is automatically wrapped in blocs to ensure that
nothing exceeds the 12 column grid width.

Rows could be considered as blocs within a bloc.
Essentially, they create a change in structure without
having to add a new bloc to your project. This may be
important in cases where you may want the same
background image in a bloc. If your content was spread
over two separate blocs you would have to add the same
image to both blocs and set them both as parallax
images to get them to merge into one image. If you
didn’t want a parallax effect, you would be better creating
your structure within a single bloc using rows to change
the content layout structure.

The easiest way to add a new row in an existing bloc is to
duplicate the first row. Simply select the first row in your
bloc and press CMD+D or use the right.click method.
When your duplicate is created, simply remove all the
columns except one. Any content within the columns will
also be deleted. You should now have a new row with a
single column. This column can be adjusted as before to
span as many grid columns as you need.

Lets take a look at an example

In the illustration below, I’ve duplicated the row used to create my image gallery and removed all but one column, That
column has been set to 12 grid columns wide. I’ve also added margin to the row to give it some space between the row above
it.

I can now adjust the column within the new row to span say 10 grid columns. I can do this by selecting the column and
dragging its resize handle or, I can simply set the width to 10 in the right sidebar. I will also offset the column by one grid
column to ensure it is centred. The offset is the number of grid columns that should be placed in front of the column to move
it to the right. In this example, we move 1 grid column to centre our content column.

I can now add content brics to my new column in its own row. I’ll set an H2, a round image and a paragraph bric. This is how it
looks:

My image bric is a little large so, I can select it and drag its resize handle until it’s a more acceptable size. By dragging the
handle, blocs will automatically create a custom class for the image. Unfortunately, it may not be a name that means much to
me, which could create problems if I need to remember the class name to apply the same class to another image in another
part of my site. When I’ve resized the image, I would click on the custom class and change its name in the class editor.

This is how things look after my image adjustments:

The thing that should be noted here is that the image content is infinitely adjustable as long as it doesn’t exceed the width of
the column containing it. Unlike columns, the adjustment of content does not snap to the underlying grid columns.
Furthermore, the content will centre itself in its containing column. This leads us on to brics.

Brics are the Containers for Content

Every piece of content in your webpage will reside inside a bric of one sort or another. When first placed on your page, a bric
will automatically adjust to the width of its containing column. However, as we saw in the previous section, brics can be
infinitely adjusted to a size smaller than the containing columns. This is a vey flexible arrangement that allows you to adjust
content without upsetting the structure of the page or its columns.

When adjusting any content by using the resize handles, blocs will always create a custom class. Just like when we adjusted
the circular image in the last section, we would edit the class name to make it more meaningful so we can remember its name
for use in other parts of our project if needed.

We will discuss classes in another tutorial, but for the time being, let’s summarise what we have discovered in this one.

• The underlying Grid is the primary structure upon which columns are created.

• Columns always snap to the underlying grid columns to ensure consistency of page layout and to create responsiveness
at different breakpoints.

• Rows are used to break down bloc content into easily manageable chunks. Each row can have its own unique column
structure without it having any effect on other rows within the same bloc. Rows can be spaced with margin to segregate
individual chunks of content from other rows .

• Brics are used within columns to place content. Brics automatically adjust themselves to the width of the containing
columns. However, content can be sized within a column without having due regard to the underlying grid.

Here is a final look at the bloc created in this tutorial, complete with its background image. This block could be saved as a
custom bloc for use in future projects.

